HMT Linkage to Weather & Water's Science, Technology & Infusion Program

Marty Ralph

NOAA HMT Planning Meeting 3-4 March 2005

ST&I Management

Program Manager: Marty Ralph, OAR

Coordinator: Ward Seguin (OAR), Co-Coordinator: Lee Stang (NWS)

Budget: D. Jiron, L. Melvilde (NWS), M. Blades, K. Jones (OAR)

What is ST&I?

ST&I is a matrix program that enables improvements in NOAA's Weather & Water services, including impacts on Commerce & Transportation and Climate services.

This requires

- meeting the short-term needs of its NOAA and other customers, as well as
- conducting long-term research that leads to breakthrough advances in services.

Program Baseline Assessment

ST&I "Capabilities"

- R&D for Water Resources Observations and Forecast Information
- R&D for Hurricane Observations and Prediction
- R&D Weather and Water Support for Transportation
- R&D for Severe Thunderstorms, Tornadoes, Hazardous Weather Forecasts and Warnings
- R&D for Marine and Coastal Weather
- R, D, and A (Acquisition) for Observations
- R, D and A for IT
- Education and Outreach
- Agency, Interagency and International Grants Program
- Weather-Climate Connection
- Tsunami Warnings

Program OverviewST&I's Primary Customers

- Local Forecast and Warnings Program
- Hydrology Program
- Environmental Modeling Program
- Coasts, Estuaries, Oceans Program
- Climate Mission Goal
- Commerce & Transportation Mission Goal
- Other Agencies needing ST&I expertise (e.g., DoD, FAA)

Program Overview ST&I Outcomes

Short-term: operational use of new science and technologies transferred to operations. Results of research, development, and testbed evaluations occurring over preceding one to five years.

Mid-term: key decisions to implement observing systems, data assimilation systems, numerical models, and information technology as a result of research, prototype development, and testbed evaluations

Long-term: decisions to investigate emerging technologies and develop prototype observing, modeling, and IT systems as result of assessments of emerging science and technological opportunities

Program OverviewST&I Program Elements

	Line	FY04	FY05	FY06	FY07
	Office	Approp	Pres. Bud.		
AOML/HRD	OAR	4.00	4.10	4.10	4.10
ETL	OAR	6.19	6.33	6.33	6.33
FSL	OAR	5.82	5.93	5.93	5.93
NSSL	OAR	7.70	7.97	7.97	7.97
PMEL	OAR	.26	.28	.28	.28
USWRP-incl Thorpex (2.3)	NWS	0	6.55	6.55	6.55
USWRP (Thorpex)	OAR	5.15	0.0	0.0	0.0
Targeted Wind Sensing	OAR	1.88	0.0	0.0	0.0
Tornado severe storm Research	OAR	.99	1.01	1.01	1.01
Remote sensing research	OAR	.50	0.0	0.0	0.0
Storm U. of N. Iowa	OAR	.49	0.0	0.0	0.0
Phased Array Radar (Eng)	OAR	.020	0.0	0.0	0.0
High Resolution Temp. Fore. Pilot	NWS	4.16	0.0	0.0	0.0
ASOS	NWS	5.07	5.13	5.13	5.13
AWIPS	NWS	13.99	14.13	14.13	14.13
NEXRAD	NWS	11.38	11.86	9.85	9.85
Radiosonde Replacement	NWS	6.92	6.99	6.58	0.0
All Hazards WCS	NWS	544	0.0	0.0	0.0
COOP -M	NWS		1.40	1.40	1.40
NPOESS Preparatory Data	NESDIS			4.50	4.50
Eएाउ खं क् रां Aरां v. Polar Data	NESDIS	2.47	3.00	1.00	1.00

Program Overview ST&I as a "Matrix Managed" Program

LINE OFFICE	CURRENT PROGRAM			
NWS	48%			
OAR	46%			
NESDIS	6%			

ST&I "STRATEGY"	CURRENT PROGRAM		
Science	30%		
Technology	20%		
Infusion	50%		

Program Shortfalls in ST&I's FY07-11 PBA*

Major Thrusts and NOAA Program Plan Decisions

ST&I Thrust	100% Requirement (\$K)	Top 10% GAP (\$K)	NOAA PDM Jan '05 (\$K)
Water Resources-Hydrometeorological Testbed	5749	1900	800 (HMT)
(Improve Quantitative Precipitation Forecasting)			
AWIPS (Next Generation AWIPS is needed)	12078	4030	0
Integrated Observations (Optimization & infusion of New Observations)	21018	3500	3800 (UAV)
Total	39531	9430	4600

^{*}Includes roughly half of total gaps identified in 100% requirements.

ST&I Hydrometeorological Testbed (HMT)

PROGRAM ADJUSTMENT

- GOAL: Weather and Water
- PROGRAM: Science, Technology & Infusion
- CAPABILITY: R&D for water resources data/information
- REQUIREMENT: Improve water resource information
- DESCRIPTION OF ADJUSTMENT: Increase ST&I R&D capacity to help improve NOAA HYD services
 - HMT (better QPF: R&D + new forecast tools)
 - Weather-Climate Connection (atmospheric rivers)
 - Hurricane precipitation (orographic effects, floods)
 - Use new satellites (Global Precip. Mission-GPM)
- PERFORMANCE MEASURES:
 - Demonstrate QPF GPRA score acceleration in testbed: double current rate of improvement of service GPRA
 - Improved data spatial/temporal density in testbed
 - Number of testbed projects completed
 - Number of field studies & observing systems tests
 - Number of physical processes better understood

BENEFITS AND RISKS

- Accelerates QPF improvements and addresses NOAA's Research Plan, AGM, NWS, ST&I priorities
- Reduces ST&I dependency on reimbursables
- New tools/models developed/tested & transitioned
- Slow QPF improvements if not implemented
- Effort required to forge research/operations cooperation
- Accurate water quality forecasts require accurate QPF
- Links OAR & NESDIS to NWS/OHD, RFCs and NCEP

FUNDING

(FY\$M):	FY06	FY07	FY08	FY09	FY10	FY11	
Current Program	1721	1721	1721	1721	1721	1721	
Program Adjustment (With	0	800	800	800	800	0	
Program adjustment (Above C	Core)	0	0	0	0	0	
Proposed Program	1721	2521	2521	2521	2521	1721	
CAPABILITY: Focused R&D and forecast tool development							
QUANTITY: Number of major field studies and infusion projects							
Input Capacity Change	FY06	FY07	FY08	FY09	FY10	FY11	
Capacity (+/-) Field studies	0	0	0	0	0	0	
Capacity (+/-)Physics/senso	0	0	0	0	0	0	
Capacity (+/-)Improve forec	0	0	0	0	0	0	
Output Capacity Change	FY06	FY07	FY08	FY09	FY10	FY11	
Capacity (+/-)Improved QPI	0	0	0	0	0	0	

ACTIVITIES, SCHEDULE & MILESTONES

- ST&I researchers will be moved from non-NOAA reimbursables to NOAA HMT projects (salaries)
- NWS forecasters test new tools (NCEP, RFCs, OHD)
- Field studies will be conducted, starting on American River of California, and upstream over Pacific Ocean jointly with HYD (equipment, travel, expendables)
- FY05-06: planning, field sites identified, interagency involvement developed, initial deployments from current program + HYD program adjustment
- FY07-08: field study on American River (winters)
- FY09-11: transition to eastern watershed (hurricanes)
- FY05-11: scientific analysis and forecast tool development/testing/transitioning (improve models)

ST&I Performance Measures Marty Ralph

Core issues:

- How to measure science and technology research performance?
- How to measure effectiveness of ST&I in improving NOAA's services?
- Should ST&I's performance be measured purely by GPRA score improvements?

Constraints:

- Science and Technology advances are a foundation of NOAA's service improvements, yet are often not initially measurable in the "service" GPRA scores.
- Improving the "service" GPRA scores requires "service" programs to adopt new methods, yet this may have a cost & require services to let go of existing methods.
- The "responsibilities" of a program must be aligned with its "authority" to act, yet in the case of ST&I, the primary authority for forecasting lies in other programs.
- While research suggests fast improvements in GPRA scores may be possible, operational goals must be reasonably achievable or the risk of failure is increased.

A solution is to use a combination of:

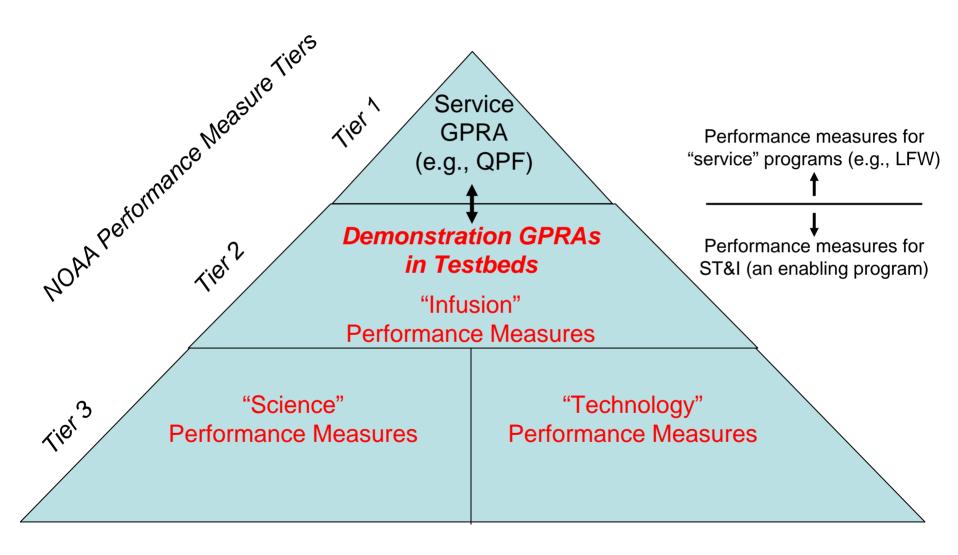
- Internal measures suitable for state-of-the-art science & technology development
- "Infusion" oriented measures, including testbed demonstrations of GPRAs
- Internal measures in "service" programs tracking implementation of infusion, i.e., measure the services' "pull" for science and technology

Performance Measures for ST&I as an "Enabling" Program*

Science:

- Forecast-critical physical processes better understood or described (#/year)
- Operational forecast models, parameterizations or tools evaluated (#/year)
- Major field projects conducted and data sets created (#/year)
- Peer-reviewed papers published (#/year)

Technology:


- New sensors, subsystems or observing strategies developed or tested (#/year)
- Alternative integrated observing system approaches evaluated (#/year)
- IT systems or major subsystems developed or tested (#/year)

Infusion:

- Testbed demonstration projects completed (#/year)
- New or improved forecast models, tools or algorithms delivered (#/year)
- New sensors acquired or deployed for operations (#/year)
- Forecaster training modules created or presented (#/year)

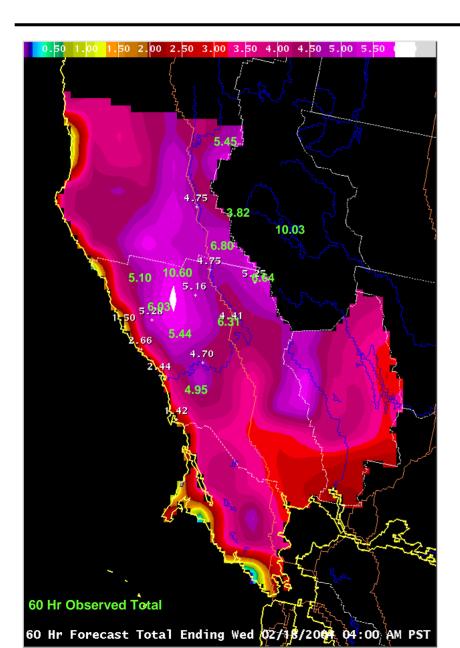
^{*}These are what were included in ST&I's PBA submitted 23 July 2004.

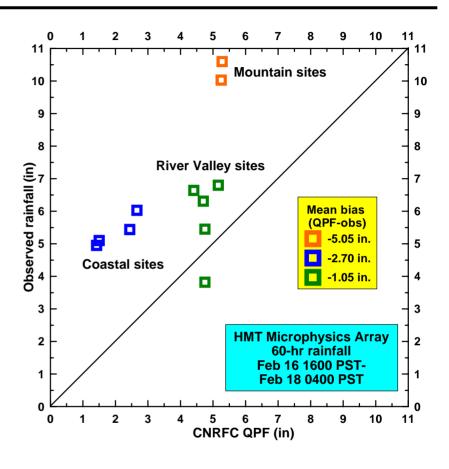
Linking ST&I Performance Measures to GPRAs

Use of "Demonstration GPRAs" in Testbeds

Concept:

- GPRA score goals can be set higher in Testbeds than in full operations
- Adoption of new methods for full operations requires proof of concept
- Proof-of-concept can be demonstrated by limiting tests to small areas, times, tools
- By limiting the scope of tests, the costs can be kept within reasonable bounds
- Researchers and forecasters jointly define strategies to demonstrate impacts on the suitable "Demonstration GPRA" goal (e.g., QPF) during the tests.
- If tests show regional improvement, extend results nationally with follow-up testing


Recent experience:


- This demonstration concept has been the de-facto approach to date
- NCEP uses it to evaluate whether model changes should be adopted operationally
- Joint Hurricane Testbed uses this approach
- Warning decision support tools turn new data into forecast usable information
- New England Temperature Forecasting Pilot Study demonstrated regional improvements and then applied results nationally

Use in ST&I:

- From recent successes, develop "best practices"
- Requires investments in ST&I focused on Testbeds (e.g., JHT and HMT)
- Requires investments from "Service Programs" and commitment to try new ideas

Improve Quantitative Precipitation Forecasting (QPF)

Preliminary comparison between predicted (CNRFC 0-60 h QPF) and observed storm-total rain (00Z 16 Feb–12Z 18 Feb '04)

Next Steps

ST&I FY08-12 Program Baseline Assessment – "current program" and "gaps":

- ST&I Capability team reviewing last year's PBA
- This meeting will help the PBA development process to define 100% program
- Gap analysis will be performed
- Develop alternatives to fill gap (include gaps in obs, models, tools, understanding)
- Create "Demonstration GPRAs"

How to get from here to FY07:

- Current program includes major investments by ETL and NSSL, and leveraging
- FY06 Hydrology Plan includes resources linking HMT and DMIP-II etc...
- A key gap is ability of time for NWS forecast experts to devote to HMT tests

The Operational "handoff":

- How to plan and implement the handoff to operations after testing? Are gaps present in HYD, LFW, CEO that should be identified to adopt or absorb new tools/methods?
- Link to new NOAA Policy on Transitioning research to Applications
- Assess user benefits